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Abstract. The experimental data of the antideuteron production in proton-proton and proton-nucleus
collisions are analyzed within a simple model based on the diagrammatic approach to the coalescence
model. This model is shown to be able to reproduce most of the existing data without any additional
parameter.

PACS. 24.10.-i Nuclear-reaction models and methods

1 Introduction

The interest in the study of production of light antinuclei,
in particular, antideuterons in proton-proton and proton-
nucleus collisions has recently intensified. There are, at
least, two major reasons for this. Firstly, studies of an-
tideuteron production in cosmic space can be a very pow-
erful tool to search for antimatter in the Universe [1]. It
is planned to measure the antideuteron flux in the future
AMS [2] and PAMELA [3] experiments.
Secondly, the possibility to make experiments with an-

tideuteron beams was discussed recently (see [4] and ref-
erences therein).
The theoretical estimation of antideuteron production

preformed in the article in [1] are based on the well-known
coalescence model [5] which supposes that two nucleons
fuse into a deuteron if the momentum of their relative
motion is smaller than a certain quantity p0, the coales-
cence radius in momentum space. This momentum p0 is
considered as a free parameter to be fixed from the exper-
imental data.
More than ten years ago, a quite simple diagrammatic

approach to the coalescence model provided a microscop-
ical basis for the coalescence model and expressed the pa-
rameter p0 in terms of the slope parameter of the inclusive
nucleon spectrum and the wave function of the produced
nucleus [6]. Within this approach, it appears to be possi-
ble to explain the empirical fact of approximate equality
of the values of the coalescence radii for the description
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of the yields of various light fragments under similar kine-
matical conditions.
The aims of this article are to generalize this diagram-

matic approach to antinuclei production (by the intro-
duction of threshold effects and by taking account of the
anisotropy of the angular distributions) and to apply this
model to the antideuteron production in proton-proton
and proton-nucleus collisions. Particular attention will be
paid to proton-proton collisions due to their interest for
astrophysics. We will show that, in the cases where the in-
clusive antiproton production cross-section and deuteron
wave function are well known, this approach can describe
quite well the inclusive antideuteron production cross-
section without any additional parameter.
Note that there are few articles in which the anti-

deuteron production is discussed within different ap-
proaches [7–10]. Some of them require additional param-
eters to describe the experimental data and none of them
describes the whole ensemble of experimental data.
The article is organized as follows. In sect. 2 the main

ideas of the diagrammatic approach to the coalescence
model are described and this approach is generalized to
the case of antideuteron production. In sect. 3, the de-
scription of the experimental data is presented. Finally,
we provide a brief summary of the results.

2 Diagrammatic approach to the coalescence
model

Let us remind the reader the main ideas of the diagram-
matic approach to the coalescence model [6]. As a ba-
sis for the coalescence model, the simplest Feynman dia-
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Fig. 1. The simplest Feynman diagram corresponding to coa-
lescence of two nucleons into a deuteron.

gram of fig. 1, corresponding to the fusion of two nucle-
ons is considered. Here the symbol f denotes the state
of all other particles except the nucleons 1 and 2 which
form the deuteron. The physical picture behind this dia-
gram is quite simple: the nucleons produced in a collision
(block A) are slightly virtual and can fuse without further
interaction with the nuclear field. This simplest diagram is
not the only possible contribution. However, as was shown
in [11], there are mutual cancellations of a number of other
diagrams and, as a result, the diagram of fig. 1 is the dom-
inant one.
Let us remind briefly how to calculate this diagram by

using the nonrelativistic technics developed in [12]. The
amplitude M of this process can be written as

M =
∫
d3p1dE1

(2π)4

∫
d3p2dE2

(2π)4
MA

× −2imp

p2
1 − 2mpE1 − i0

−2imp

p2
2 − 2mpE2 − i0

Md

×(2π)4δ3(p1 + p2 − P)δ(E1 + E2 − E − ε).

Here MA is the diagram corresponding to the block A
(production of nucleons 1 and 2 and other particles in
the final state f), Md the vertex of coalescence to the
deuteron, mp the nucleon mass. Two fractions are prop-
agators of nucleons 1 and 2, the integrals are done over
energies and momenta of these virtual particles. The last
delta-functions reflect energy momentum conservation in
the deuteron vertex (P = p1+p2 is the deuteron momen-
tum, E = P2/4mp its kinetic energy, ε ≈ −2.2 MeV its
binding energy).
After a trivial integration over p2 and E2 and the in-

troduction of the relative momentum q = 1
2 (p1−p2), one

obtains the following expression:

M =
∫
d3qdE1

(2π)4
MA(P,q)Md

−2imp

(q+P/2)2 − 2mpE1 − i0

× −2imp

(q − P/2)2 − 2mp(P2/4mp − E1 + ε)− i0
.

The final integration over dE1 (one supposes as usually
that the only singularities in the complex E1-plane are

those of propagators) gives

M = i

∫
d3q

(2π)3
MA(P,q)ϕd(q) , (1)

where the deuteron wave function

ϕd(q) =
mpMd

q2 +mp|ε|
is normalized by the condition∫

d3q

(2π)3
|ϕd(q)|2 = 1.

To perform further calculations, one needs to make
an assumption about the dependance of the amplitude
MA corresponding to the block A on its variables (the
particle momenta). It can be shown [6], that the simplest
hypothesis that this amplitude is constant gives rise to
a wrong result: the production cross-section appears to
be zero. One can see it from (1). When MA does not
depend on momenta the transition amplitude M becomes
proportional to

M = iMA

∫
d3q

(2π)3
ϕd(q) ∝ ϕd(r = 0) = 0,

i.e. the deuteron wave function at the origin which, for
realistic potentials, is equal to zero.
Therefore, the momentum dependence ofMA has to be

introduced, for instance, in a “minimal” way: the inclusive
nucleon spectra usually have a decreasing form and can
be parameterized by a Gaussian function in rather wide
parameter regions:

Ep
d3σp

dp3
p

∝ exp (−p2
p/Q2

)
, (2)

where Q is related to the slope parameter. Accordingly,
the amplitude MA can be written in the following way:

MA = C exp
(
−p2

1 + p2
2

2Q2

)
= C exp

(
− P2

4Q2
− q2

Q2

)
, (3)

where the center-of-mass motion of the two nucleons is
separated from their relative motion. The amplitude MA

determines the cross-section for the simultaneous produc-
tion of two nucleons which can be expressed in a standard
way which supposes a statistical independence in the pro-
duction of the two nucleons as a product of inclusive cross-
sections:

d6σpn

dp3
pdp3

n

=
1

σinel

d3σp

dp3
p

d3σn

dp3
n

, (4)

where σinel is the cross-section of the inelastic interaction
of initial particles.
After the substitution of (3) into the expression for the

diagram of fig. 1 and taking into account (4), the cross-
section for the formation of deuterons takes the form

Ed
d3σd

dp3
d

= 12π3|S|2 1
mpσinel

Ep
d3σp

dp3
p

En
d3σn

dp3
n

, (5)
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Fig. 2. Dependence of the coalescence momentum p0 on the
slope parameter Q of the inclusive nucleon spectrum for differ-
ent nucleon-nucleon potentials.

where pd ≈ 2pp, and

S =
∫

d3q

(2π)3
ϕd(q) exp

(
− q2

Q2

)
. (6)

The structure of (4) is exactly the same as that of the
coalescence model and one can obtain easily the following
expression of the coalescence radius in momentum space1:

p3
0 = 36π

2

∣∣∣∣
∫

d3q

(2π)3
ϕd(q) exp

(
− q2

Q2

)∣∣∣∣
2

. (7)

Thus, the approach based on the diagram of fig. 1 re-
produces the coalescence model with p0 which is no more
a free parameter but it is determined by the inclusive pro-
ton spectrum and by the deuteron wave function. As an
example, in fig. 2 the values of p0 as a function of Q
(eq. (8)) are presented for different nucleon-nucleon po-
tentials (Paris [13], Bonn [14], and different versions of
Nijmegen potential [15]).
One can see that all potentials give the same result up

to Q ≈ 300 MeV/c where the deuteron wave function in
momentum space is quite well known. For higher values
of Q the difference between the predictions of different
nucleon-nucleon potentials can be very important (taking
into account the fact that the cross-section is proportional
to the third power of the coalescence radius in momentum
space p0). In this work, the Paris potential was chosen for
further calculations.
The isotropic angular dependence supposed in (2) is

quite frequently used in nonrelativistic collisions. In the
relativistic case, the dependences on transversal and lon-
gitudinal momentum can be very different. However, the
formulae obtained within this approach can be easily gen-
eralized to any angular dependence.

1 In this definition of p0, the spin of outgoing particles is
not taken into account (see [6] for discussion). Note also that
the definition of the parameter p0 given in [1] differs from the
standard one by a factor of 2.

If the inclusive nucleon cross-section is parameterized
by an amplitude Mp1

E1
d3σ1

dp3
1

= |Mp1
|2, (8)

the cross-section for the deuteron formation can be written
as (see (1))

Ed
d3σd

dp3
d

=
12π3

σinelmp

∣∣∣∣
∫

d3q

(2π)3
Mp1

Mp2
ϕd(q)

∣∣∣∣
2

. (9)

It is clear that this model can be practically directly
used to describe the production of antideuterons. The only
problem is the presence of the threshold in the antiparti-
cle production cross-sections. The coalescence model and
the approach used here (10) are not valid in the near-
threshold region. Therefore, one needs to propose a phe-
nomenological procedure to describe experimental data
near the threshold. For proton-proton collisions, the au-
thors of [1] have proposed a quite simple prescription: the
center-of-mass energy available for the production of the
second antinucleon has to be reduced by twice the energy
carried away by the first antinucleon Ep̄. In other words,
the two antinucleons are supposed to be produced at dif-
ferent energies:

√
s and

√
s − 2Ep̄.

In this article, the antideuteron production threshold
is taken into account in a slightly different way. In proton-
proton collisions, the main reaction giving antideuterons
is pp → d̄pppn. Near the threshold of this reaction, the
energy dependence of the antideuteron production cross-
section is mostly determined by the phase space of four
nucleons Φ(

√
s − Ed̄;m,m,m,m),

Ed̄

d3σd̄

dp3
d̄

∝ Φ(
√

s − Ed̄;m,m,m,m). (10)

The phase space Φ for n-particles with masses, mo-
menta and energies, respectively, mi, pi, Ei is defined in
the usual way (in cms):

Φ(
√

s;m1,m2, . . . mn) =
n∏

i=1

1
(2π)3

d3pi

2Ei
δ3

(
n∑

i=1

pi

)
δ

(
n∑

i=1

Ei −
√

s

)

and is calculated by using the standard CERN library
program [16].

√
s is the total energy available for these

n-particles in the center-of-mass system.
Therefore, one can introduce a phenomenological cor-

rection factor R to the formula (10) defined as

R(
√

s − Ed̄) =
Φ(

√
s − Ed̄;m,m,m,m)

Φ(
√

s − Ed̄; 0, 0, 0, 0)
, (11)

where the denominator contains the ultrarelativistic phase
space to ensureR to be dimensionless and to have a correct
behavior at high energies (R → 1). The behavior of R(x)
is presented in fig. 3.
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Fig. 3. Dependence of the threshold factor R(x) on its argu-
ment.

There are, at least, two advantages with respect to the
prescription chosen in [1]. Firstly, one makes no assump-
tion about the mechanism of production. Secondly, this
correction factor has a correct kinematic behavior both
near the threshold and at high energies. We will discuss
the role of this factor later.

3 Description of experimental data

Before presenting the results, let us make some prelimi-
nary remarks about the existing experimental data.

– The experimental data on antideuteron production are
not abundant and are much less informative than those
on deuteron production. There are only a few different
experimental observations of antideuteron production
in proton-proton [17–21], proton-nucleus [21–24], and
nucleus-nucleus collisions [25–27]. Some experimental
results cannot be analyzed within our approach be-
cause the experimental information is not complete.
For instance, in [28] there is no data on antiproton
production for corresponding energies; in [29] only rel-
ative spectra (antiprotons to π− and antideuterons to
π−) were measured.

– To obtain a reasonable description within the present
approach, one needs to know the cross-section of an-
tiproton production for the antiproton momentum
equal to a half of the antideuteron one. Unfortunately,
this condition is rarely satisfied: in most experiments,
the differential cross-sections of the antiproton and
antideuteron production being measured for approx-
imately the same momentum. Therefore, to apply the
method one has to extrapolate the antiproton data to
another kinematical region. This procedure, of course,
introduces an additional error.

– In principle, the inclusive cross-sections discussed here
are functions of two kinematical variables (for instance,
transversal and longitudinal momentum) and one has
to present the results in three-dimensional form. How-
ever, in each experiment one has only a few experimen-

tal points and the results are presented as a function of
one variable (either total or transversal momentum).

The total inelastic cross-section was taken from the
PDG data [30] (for proton-proton collisions) or described
by the well-known parameterization [31] (for proton-
nucleus and nucleus-nucleus collisions).

3.1 Proton-proton collisions

Let us begin the analysis with the most informative ex-
periment performed on the ISR at CERN. In a few experi-
ments, the spectra of antiprotons [32] and antideuterons
[17,18] were measured in pp-collisions at

√
s = 53 GeV.

The detector was situated at 90 degrees (in this geometry,
the total momentum of outgoing particles coincides with
the transversal one). Inclusive antiproton cross-sections
over quite large regions of momentum and

√
s were ob-

tained in [32]. An example of an experimental distribu-
tion of antiprotons for

√
s = 53 GeV is presented in fig. 4

in comparison with two different parameterizations of the
data.
The first parameterization (solid line) proposed by the

authors of the experiment [32],

Ep̄
d3σp̄

dp3
p̄

= Asα exp[−Bpt], (12)

with parameters A = 0.195 mbarn/(GeV/c)2, α = 0.310,
B = 2.49 (GeV/c)−1 describes perfectly these data. The
second one (dashed line)

Ep̄
d3σp̄

dp3
p̄

= f exp[−(Apt +Bp2
t )], (13)

is the frequently used parameterization proposed by Tan
and Ng [33] which works quite well in a wide region of
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Fig. 4. The inclusive differential cross-section of antiproton
production as a function of the transversal momentum pt com-
pared to two different parameterizations: solid line, exponential
parametrization [32]; dashed line, Tan and Ng [33] parameter-
ization. The data are taken from [32].
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Fig. 5. The inclusive differential cross-section of antideuteron
production as a function of the transversal momentum pt com-
pared to the calculations with two different parameterizations
of the antiproton production cross-section: solid line, exponen-
tial fit; dashed line, Tan and Ng parameterization. The dotted
line is the calculation with an exponential function without the
anisotropy effect. The data are taken from [17] (black circles)
and [18] (open circles).

pt and
√

s. Here f = f(E∗,
√

s), A = A(E∗,
√

s) and
B = B(E∗,

√
s) are known functions of

√
s and of the

antiproton energy in the center-of-mass system E∗. This
formula gives here reasonable values of the cross-section
but the trend is not well reproduced. We present here
both quite close parameterizations to demonstrate the dif-
ference in description of the data on antideuteron produc-
tion. The corresponding cross-section measured in this ex-
periment [17,18] are given in fig. 5 and compared with
different calculations.
Comparison between the two parameterizations shows

that the description of the antideuteron production is
quite sensitive to the antiproton production cross-sections:
20–30% difference in description of the p̄ data can result
in a factor of 2 for the d̄. This difference can be even more
pronounced if one has to extrapolate a chosen parame-
terization. As we mentioned previously pd̄ ≈ 2pp̄. This
condition is satisfied for these ISR data. In some other
experiments presented hereafter, it is not the case.
In this figure, one can see also the importance of the

anisotropy of angular distributions. An exponential pa-
rameterization (13) of the antiproton production cross-
section can be seen in two ways: as a function of the to-
tal antiproton momentum or of the transversal one (as
stated previously, in the particular geometry of this exper-
iment, they are equal to each other). However, in the inte-
gral (10), all directions (and not only transverse one) are
presented and the difference between total and transver-
sal momenta can be quite important. Thus, for the data
under consideration the solid line represents the results
with parameterization (13), whereas the dotted line cor-
responds to the same parameterization but with total mo-
mentum instead of the transversal one (antiproton produc-
tion cross-section supposed to be isotropic).

By using the picture of the coalescence model, it is
quite easy to see when anisotropy can be important in
the description of the experimental data. If the total an-
tideuteron momentum pcm is very high with respect to the
coalescence radius in momentum space p0, antiproton and
antineutron are produced in approximately the same di-
rection (the direction of the antideuteron momentum) and
the anisotropy of antinucleon angular distributions plays
no role. If p0 ≈ pcm, the two antinucleons can propagate
in quite different directions before coalescence and it is
necessary to take anisotropy into account correctly.
For these ISR data, the total antideuteron momentum

pcm is of the order of the coalescence momentum p0 and
the anisotropy effect is seen clearly. In all other experimen-
tal data discussed hereafter, pcm is very high with respect
to p0 and the anisotropy effect is not so important.
We can thus understand easily that if one uses aniso-

tropic cross-sections the effect of the D-wave in the
deuteron wave function can be quite important (for
isotropic Gaussian parametrization (1), the D-wave con-
tribution is explicitly equal to 0). For these ISR data, the
introduction of the D-wave contribution into the deuteron
wave function divides the value of the cross-section by a
factor of 2.
In all calculations presented in this article, the Paris

wave function is used. For most experimental data ana-
lyzed in this article, the choice of the deuteron wave func-
tion is not crucial: if the characteristic slope parameter of
the inclusive antinucleon spectrum is less than approxi-
mately 0.5 GeV/c, all potential models give close values
of p0 (see fig. 2). However, for some sets of data it is not
the case (we will mention them where necessary).
Another set of experimental data for the same

√
s but

with very large longitudinal component of antideuteron
momentum pl ≈ 5–7 GeV/c was measured in [19] and
is presented in fig. 6. The antiproton spectrum is taken
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Fig. 6. The inclusive differential cross-section of antideuteron
production as a function of the transversal momentum pt

compared to the calculations with two different parameteri-
zations of the antiproton production cross-section: solid line,
exponential function; dashed line, Gaussian. The data are
taken from [19].
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Fig. 7. The inclusive differential cross-section of antideuteron
production as a function of the transversal momentum pt com-
pared to the calculations with two different parameterizations
of the antiproton production cross-section: solid line, exponen-
tial function; dotted line, Gaussian. In both calculations, the
threshold effect is not included. The third line (dashed) cor-
responds to calculations using the Gaussian parameterization
including the threshold effect. The data are taken from [21].

from an experiment performed by this group [34]. Unfor-
tunately, the parameterization of Tang and Ng does not
work well here (its prediction exceeds systematically the
data by a factor of 2). Therefore, we fitted the data by a
Gaussian (proposed also by the authors of [34]) and by an
exponential function of pt. Both parameterizations give a
quite good antideuteron production cross-section.
However, it appears to be impossible to reasonably

describe another set of ISR data measured at very high
momentum transfer [20]. The parameterization of Tang
and Ng cannot reproduce the antiproton production cross-
section: the order of magnitude is correct but its trend is
not general which has a quite unusual form (the cross-
section increases with increasing pt! Thus, the absence of
the p̄ cross-section parameterization does not allow us to
obtain a reasonable description of the d̄ production data
(the use of Tan and Ng parameterization as input gives a
result 4–10 times higher than the experimental data).
The last measurement of d̄ production in pp-collisions

was performed ten years later at the IHEP machine [21]
at lower cms energies (

√
s = 11.5 GeV) and with differ-

ent geometry (with fixed target). The data were taken
at very high pt and pl and are not very rich (two points
both for p̄ and d̄). Tang and Ng parameterization fails to
describe the data (by a factor of ten for the highest mo-
mentum) and the characteristic slope parameter of the in-
clusive p̄ spectrum is quite high (where different potential
models give quite different (by a factor of 2) predictions).
However, we decided to present this instructive example
because one can estimate here the role of the threshold
effect by the procedure proposed in (12). One can fit the
antiproton data (two points) both by a Gaussian and an
exponential function of pt. The corresponding predictions
for the d̄ production cross-section are given in fig. 7 by
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Fig. 8. The inclusive differential cross-section of antideuteron
production on Be and Pb targets as a function of the transver-
sal momentum pt compared to the calculations with two dif-
ferent parameterizations of the antiproton production cross-
section: solid line, exponential function; dashed line, Gaussian.
The data are taken from [21].

the dotted and solid line, respectively (without threshold
effect). Once the threshold is taken into account by the
introduction of the factor R (12), the agreement with the
experimental data is improved significantly (the dashed
line represents the calculations with an exponential pa-
rameterization and the threshold effect).

3.2 Proton-nucleus collisions

Unfortunately, there are no more exploitable data on the
antideuteron production in proton-proton collisions. To
test further the model, we analyzed the available data on
the d̄ production in proton-nucleus collisions. Here, one
has no more general parameterization like [33] and, for
each set of data, a different parameterization is used2.
In the same IHEP experiment [21], the production of

antideuterons was measured on Be and Pb targets also.
For these data, one can make the same remarks as for

the data obtained in the proton-proton collisions (only a
few experimental points, very high momenta of outgoing
particles, and quite high value of the slope parameter).
The results are presented in fig. 8 and look quite encour-
aging.
There are also old IHEP measurements of the anti-

deuteron production in p-Al collisions [22,23]. The data
were taken in the forward (or practically forward) direc-
tion and we have no information about the pt-dependence
of the antiproton production cross-section (thus we can-
not take completely into account the anisotropy of angular
distributions). Therefore, in fig. 9, the results of the cal-
culations and the data are presented as a function of the

2 Note that in high-energy proton-nucleus and nucleus-
nucleus collisions, the physical center-of-mass system is the
nucleon (from the target) - nucleon (from the beam) one.
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Fig. 9. The inclusive differential cross-section of antideuteron
production on Al target as a function of the total momentum in
the center-of mass frame compared to the calculations with two
different parameterizations of the antiproton production cross-
section: solid line, exponential function; dashed line, Gaussian.
The data are taken from [22] (black circles) and [23] (open
circles).

total d̄ momentum. Note that, for the Gaussian function,
the value of the slope parameter Q appears to be very
large (of the order of 1.3 GeV/c), where the deuteron wave
function is not known and the results depend strongly on
the nuclear potential.
This analysis can be completed by the measurement

performed in FNAL [24], where the antideuteron produc-
tion cross-section was measured for different targets (Be,
Ti, W) at intermediate (with respect to the ISR and IHEP
experiments) energies (

√
s = 23.7 GeV/c). The data were

taken at quite high transverse momentum. The theoreti-
cal results presented in fig. 10 are in quite good agreement
with the experimental data for the three targets. One of
the reasons for this good agreement is a good knowledge
of the antiproton production cross-section obtained in this
experiment.
It is necessary to note that there are also some

experimental results on antideuteron production in
nucleus-nucleus collision obtained in the AGS experiment
(one point in Si + Al collision [25] and two points in
Au + Pb [26]) and in the NA52 experiment [27]. Unfor-
tunately here, one has neither a good parameterization
of the antiproton production cross-section nor a reliable
parameterization for the total inelastic cross-section. The
measurements were made in the forward direction and
one has no information about the pt-dependance of the
antiproton production cross-sections (thus, it is impossi-
ble to take into account correctly the anisotropy of angu-
lar distributions which can be very important here). Sim-
ple parameterizations (Gaussian and exponential) gave no
satisfactory description. In general, the discrepancy be-
tween the calculations and the data is of the order of
a factor 5, which is not very surprising taking into ac-
count all these remarks. As an example, in fig. 11 the
calculation of the antideuteron production cross-section
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Fig. 10. The inclusive differential cross-section of antideuteron
production on Be, Ti, and W targets as a function of the
transversal momentum pt compared to the calculations with
exponential parameterization of the antiproton production
cross-section. The data are taken from [24].
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Fig. 11. The inclusive differential cross-section of antideuteron
production in Pb-Pb collisions as a function of total momen-
tum in the center-of-mass frame compared to the calculations
with two different parameterizations of the antiproton produc-
tion cross-section: solid line, exponential function; dashed line,
Gaussian. The data are taken from [27].

in Pb + Pb collisions as a function of total momentum in
the center-of-mass frame in comparison with the experi-
mental data [27] is presented. The data cover a very large
momentum region and the characteristic momentum in
the antiproton production cross-section is very high (of
the order of 2 GeV/c).

4 Conclusions

Our main conclusion is that the diagrammatic approach to
the coalescence model developed in [6] can be successfully
applied to the description of the antideuteron production
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in proton-proton and proton-nucleus collisions. There are
two modifications: firstly, it is necessary to take into ac-
count the threshold effect and, secondly, one must include
specific consideration of the strong anisotropy of the an-
gular distributions of antiproton production. Once these
phenomena are taken into account, the model can describe
most of the existing experimental data on the antideuteron
production in proton-proton and proton-nucleus collisions.
The successful reproduction of experimental data sug-

gests that a good knowledge of the antinucleon produc-
tion cross-section and of the deuteron wave function allow
to describe the antideuteron production cross-section in
a quite large region of kinematic variables without any
additional parameter.

During the preparation of this article, we learnt about the
death of our friend and colleague V.M. Kolybasov who pro-
posed the model discussed in this article. We would like to ded-
icate this work to his memory. The authors would like to thank
A. Barrau, M. Buénerd, A.J. Cole, L. Dérome, V.A. Karmanov
and P. Salati for very useful and stimulating discussions.
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